Pt. 63, Subpt. G, Table 28 ## 40 CFR Ch. I (7-1-11 Edition) | Deck fitting type | Deck fitting
loss factor
(K _F) ^a | Typical number of fit-
tings (N _F) | Deck fitting t | |--|---|---|---| | Unbolted cover, ungasketed. | ^b 28 | | Stub drain, 1-i | | Column well Builtup column-sliding cover, | 33 | (see Table 24). | Vacuum break
Weighted
chanica
tuation, | | gasketed. Builtup col- umn-sliding cover, ungasketed. | ⁶ 47 | | gaskete
Weighted
chanica
tuation,
ungask | | Pipe column-
flexible fabric
sleeve seal. | 19 | | ^a Units for K
^b If no speci
sumed to repr | | Pipe column-
sliding cover,
gasketed. | 32 | | rently used. ^c D=Tank dia ^d Not used o | | Pipe column-
sliding cover,
ungasketed. | | | Table 28
Deck | | Sliding cover,
gasketed. | 56 | 1. | for
Tank | | Sliding cover,
ungasketed.
Roof leg or hanger | ^b 76 | (5+D/10+D2/600) °. | | | well. | | (3+D/10+D-/600)°. | - | | Adjustable Fixed Sample pipe or well Slotted pipe- sliding cover, | 67.9
0
44 | 1. | Continuous sh 5-feet wid 6-feet wid 7-feet wid Panel construe 5 × 7.5 fe | | gasketed.
Slotted pipe-
sliding cover, | 57 | | 5 × 12 fee | | ungasketed. Sample well- slit fabric seal, 10 per- cent open area. | b12 | | are feet per so b S _D =1/W, v c If no specit assumed to r rently in use. d S _D =(L+W) panel length (f | | Deck fitting type | Deck fitting loss factor (K _F) ^a | Typical number of fit-
tings (N _F) | |---|---|---| | Stub drain, 1-in di-
ameter d. | 1.2 | (D ² /125) °. | | Vacuum breaker
Weighted me-
chanical ac-
tuation,
gasketed. | ь0.7 | 1. | | Weighted me-
chanical ac-
tuation,
ungasketed. | 0.9 | | ## 28 TO SUBPART G OF PART 63— SEAM LENGTH FACTORS A (SD) INTERNAL FLOATING ROOF KS | Deck construction | Typical deck
seam length
factor | | |----------------------------------|---------------------------------------|--| | Continuous sheet construction b: | | | | 5-feet wide sheets | 0.2 ℃ | | | 6-feet wide sheets | 0.17 | | | 7-feet wide sheets | 0.14 | | | Panel construction d: | | | | 5 × 7.5 feet rectangular | 0.33 | | | 5 × 12 feet rectangular | 0.28 | | ## Table 29 to Subpart G of Part 63—Seal Related Factors for External FLOATING ROOF VESSELS | Seal type | | Welded ves-
sels | | Riveted ves-
sels | | |----------------------------------|-----|---------------------|------|----------------------|--| | | | N | Ks | N | | | Metallic shoe seal: | | | | | | | Primary seal only | | 1.5 | 1.3 | 1.5 | | | With shoe-mounted secondary seal | | 1.2 | 1.4 | 1.2 | | | With rim-mounted secondary seal | | 1.0 | 0.2 | 1.6 | | | Liquid mounted resilient seal: | | | | | | | Primary seal only | | 1.0 | a NA | NA | | | With weather shield | | 0.9 | NA | NA | | | With rim-mounted secondary seal | | 0.4 | NA | NA | | | Vapor mounted resilient seal: | | | | | | | Primary seal only | | 2.3 | NA | NA | | | With weather shield | 0.9 | 2.2 | NA | NA | | | With rim-mounted secondary seal | 0.2 | 2.6 | NA | NA | | ^a NA=Not applicable. $[\]mathsf{K}_{\!\scriptscriptstyle F}$ are pound-moles per year. ific information is available, this value can be asresent the most common/typical deck fittings cur- liameter (feet). on welded contact internal floating decks. am loss applies to bolted decks only. Units for S^D square feet. where W = sheet width (feet). diffic information is available, these factors can be represent the most common bolted decks cur- $^{^{\}prime}$ V)/LW, where W = panel width (feet), and L = (feet).